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Preface

These notes are one part of a collaborative writing project we ran in the first
few weeks of the Markov Chains REU at UConn in Summer 2019.

In this project, notes for a crash course in probability were written and
edited by the students and the staff. The structure of the crash-course and an
initial template were prepared in advance by the staff. The students worked
on filling the content with introductory and motivating text and explanations,
giving examples and applications, writing proofs, revising their own and others’
work. They also spiced it up with some cartoons.

The goal was to experience mathematical writing and collaboration on a
writing project, reviewing own and other’s work, and learning from feedback.
It also helped filling gaps in preparation for our main research projects.

We present here the section on some common inequalities in probability.

Figure 1: RV joke
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1 Inequalities

Figure 2: Inequality Joke

Inequalities are extremely important because they provide tools to control
various quantities, usually when no exact expression is readily available. Two
examples:

• Markov’s inequality, Theorem 1.1, allows us to bound probabilities through
the expectation.

• the Cauchy-Schwarz inequality, Theorem 1.2, allows us to bound the ex-
pectation of a product of random variables (obviously, unnecessary if they
are independent, but non-trivial in general) in terms of the respective
second moments.

We will detail four fundamental inequalities, go through their proofs, and demon-
strate uses.

1.1 Markov’s Inequality

According to the World Health Organization, an average (expectation) of 3, 287
deaths each day are caused by car crashes. Markov’s inequality allows us to
use this average and only the average to conclude that the probability of a
catastrophic day with at least 10 times deaths than the average is no more than
10%, and a day with 100 times the average has probability less than 1%. These
estimates are pretty crude, but with more information (like higher moments
rather than expectation), Markov’s inequality can be substantially refined. For
some applications that are more “qualitative” in nature, we don’t even need a
sharp bound. An example is the Weak Law of Large Numbers.

Assume Y is a nonnegative random variable and let y > 0. Then

E[|Y |] ≥ E[|Y |1{|Y |≥y}]
≥ E[y1{|Y |≥y}]

= yP (Y ≥ y).
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This proves the following:

Theorem 1.1 (Markov’s Inequality). Let Y be a nonnegative RV and let y > 0.
Then

P (Y ≥ y) ≤ E[Y ]

y
.

Example 1.1. According to the CDC’s Vital and Health Statistics, Series 3,
Number 39, the average height for a woman aged 20 and over living in the U.S.
is 161.8 cm. Using Markov’s inequality, we see that the probability that a woman
is over 180 cm tall is no greater than 89.9 percent.

Problem 1.1. Let’s assume all women 20 and up are at least 120cm tall. Use
this assumption and the data from Example 1.1 to show that the proportion of
women taller than 180cm is not larger than 70%. Still far off, but at least a
number...

Example 1.2. According to the Social Security Administration, the life ex-
pectancy of men is 84 years. As a result of Markov’s inequality we can see that
the probability of a man living past the age of 100 is no greater than 84 percent.

One important utility of Markov’s Inequality is that you can precompose
the random variable with a monotonically-increasing function before applying
Markov’s inequality.

For example, precomposing with the function x 7→ x2 gives us Chebyshev’s
inequality. Fix a RV X with finite second moment. Let Y = (X −E[X])2. For
x > 0, the event {Y ≥ x2} coincides with the event {|X − E[X]| ≥ x}. Thus,

P (|X − E[X]| ≥ x) = P (Y ≥ x2) ≤ E[Y ]

x2
=
σ2
X

x2
,

Where σ2
X is the variance of X. The inequality thus obtained is so important

it even has a name:

Corollary 1.1 (Chebyshev’s inequality). Let X be a random variable, with
finite second moment. Then

P (|X − E[X]| ≥ x) ≤ σ2
X

x2
.

One can repeat this trick. Here is another useful and celebrated example.
Precomposing with the function x 7→ esx (where s is any constant, usually
chosen later to maximize the strength of the inequality) gives bounds known as
Chernoff bounds.

• Suppose s > 0. Let Y = esX . Again, Y is nonnegative. The event
{X ≥ x} coincides with the event {Y ≥ esx}. By Markov’s inequality,

P (X ≥ x) = P (Y ≥ esx) ≤ E[esX ]

esx
.
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• Suppose now s < 0. Let Y = esX . Then the event {X ≤ x} coincides
with the event {Y ≥ esx}. Again, Markov’s inequality gives

P (X ≥ x) ≤ E[esX ]

esx
.

Notice that s → E[esX ] is the moment-generating function for the random
variable X, and since the bounds obtained above are valid for any s suchthat
E[esX ] is finite, we obtain the following, known as Chernoff bounds:

Corollary 1.2 (Chernoff Bound). Let Y be a random variable, then

P (X ≥ x) ≤ inf
s>0

E[esX ]

esx

P (X ≤ x) ≤ sup
s<0

E[esX ]

esx
.

Let’s see how one can Chernoff’s bounds to get some time estimates for
probabilities otherwise elusive. Consider a Poisson RV X with parameter λ.
The moment generating function for X is equal to

E[esX ] = eλ(e
s−1),

and its calculation is nothing but summation of the Taylor series for ex. Finding
tail probabilities like P (X > x) for large x is harder and has no closed formula.
By Chernoff’s bounds, for s > 0,

P (X ≥ x) ≤ exp(λ(es − 1)− sx).

Differentiate the exponent on the right-hand side with respect to s to find a
minimum. The minimum is attained at λes = x, and therefore the exponent is
equal to x− λ− x ln(x/λ)). Choosing x = (1 + r)λ, this simplifies to rλ− (1 +
r)λ ln(1 + r). Since λ = E[X], we obtain the following bound:

P (X − E[X] ≥ rE[X]) ≤ (1 + r)−λ(
e

1 + r
)rλ.

For a concrete example, ... .
We used this applet to calculate the exact probability.
The Chernoff bound can be used to bound probabilities that would be dif-

ficult to compute through other methods. Take, for instance, a Poisson distri-
bution with rate λ = 15. It is possible to calculate the probability that the
random variable takes a value ≥ 20, but that would require that you calculate
and take one minus the sum of the probabilities of observing values 0 through
19. While this is possible, it is tedious. You could instead employ the Chernoff
bound since the MGF for a Poisson is known.
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1.2 Cauchy-Schwarz Inequality

The Cauchy-Scwarz Inequality allows us to “decouple” expectations of products
of random variables and provide bounds in terms of the second moments of the
individual RVs. The inequality is based on the positivity of the square function
(as well as positivity and linearity of expectation).

Theorem 1.2 (Cauchy-Schwarz Inequality). Let X and Y be random variables.
Then,

E[|XY |] ≤
√

E[X2]E[Y 2]

Furthemore, equality holds if and only if one of the RVs is a constant multiple
of the other with probability 1.

Proof. Clearly, it is enough to show assuming X and Y are nonnegative. We
will work under this assumption. We may also assume E[X2]E[Y 2] > 0 because
otherwise at least one of the RVs is equal to zero with probability 1, and then
the inequality is trivial (both sides are zero). We begin by analyzing the special
case. Assume X ′, Y ′ are nonnegative RVs satisfying E[(X ′)2] = E[(Y ′)2] = 1.
We have

0 ≤ E[(X ′ − Y ′)2] = 2− E[X ′Y ′].

Therefore
E[X ′Y ′] ≤ 1. (1)

To complete the proof for the general case, assume X,Y are nonnegative RVs
with E[X2]E[Y 2] > 0. Let X ′ = X/

√
E[X2] and Y ′ = Y/

√
E[Y 2]. Then from

(1) we have
E[XY ]√

E[X2]
√
E[Y 2]

= E[X ′Y ′] ≤ 1,

and the result follows.

An important use of the Cauchy-Schwarz inequality is in the concepts of
covariance and correlation of two RVs. The covariance of two RVs X and Y ,
Cov(X,Y ) = E[(X − E[X]) (Y − E[Y ])]. This is a generalization of the notion
of variance (in which case Y = X). Note that from linearity of the expectation,

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

What does it mean in “real life”? Note that if X and Y are independent, then
the covariance is zero. More generally, we say that X,Y are uncorrelated if
Cov(X,Y ) = 0. Independence implies being uncorrelated but the converse is
not true in general.

By the Cauchy-Schwarz inequality,

|Cov(X,Y )| ≤ σXσY , (2)

and an inequality holds if and only if for some constant c, X = cY or Y = cX.
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Example 1.3. Suppose the gas price per gallon in the month of February is
a RV X with expectation $2.99, and that the amount of gallons per month
consumed by a household during that month is a RV Y with expectation 400.
The expected amount spent on gas by a family is then E[XY ], and, in general,
it need not coincide with the product of the respective expectations, which is
$2.99 ∗ 400 = 1196. The covariance gives us the difference between the former
and the latter. Suppose now we also know that σX = $1 and σY = 200. Then
by (??) we have

|E[XY ]− 1196| ≤ 200.

So without additional information on the intricate details of how X and Y are
dependent of each other, we have a bound on the average amount spent on gas
by household.

It is often convenient to express correlation as a “unitless” or “normalized”
number. We define the correlation of X and Y

Cor(X,Y ) =
Cov(X, y)

σXσY
,

whenever σXσY > 0 (the alternative is X or Y is a constant RV). From (2), we
have

Cor(X,Y ) ∈ [−1, 1],

wirh corrlation equal to ±1 if and only if X = cY or Y = cX for some constant
c, and in this case the sign of c coincides with the sign of the correlation.

Cauchy-Schwarz can be seen as a special case of the more general Hölder’s
inequality:

Theorem 1.3 (Hölder’s Inequality). Let X,Y be positive random variables.
Then for any p, q ∈ [1,∞] with 1

p + 1
q = 1,

|E[XY ]| ≤ E[Xp]1/pE[Y q]1/q.

(Cauchy-Schwarz is the special case where we apply Hölder’s inequality with
p = q = 2 to |X|, |Y |.)

In fact, Cauchy-Schwarz can be used to prove Hölder’s inequality. The proof
we present below is from A proof of H ölder’s inequality using the Cauchy-
Schwarz inequality, by Li and Shaw, Journal of Inequalities in Pure and Applied
Mathematics. Vol. 7-(2), 2006.

In the proof, we will use multiple times the fact that a function (which is
allowed to take on values of ∞) is convex if and only if it is midpoint-convex
and continuous. Since this isn’t a real analysis text, we will leave the proof of
this as an exercise.

Proof. We will assume that X,Y are positive; it suffices to prove the inequality
in this case, for if X,Y are any random variables and p, q are numbers such that
the inequality makes sense (e.g. p and q are integers), we can get the desired
inequality from Hölder’s inequality for the random variables |X| and |Y |.
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Define the function
F (t) := E[XptY q(1−t)].

Then F (1) = E[Xp], F (0) = E[Y q], and F
(

1
p

)
= E[XY ]. We then want to

show

F

(
1

p

)
≤ F (0)1/p + F (1)1/q = F (0)

1
p + F (1)(1−

1
p ).

Observing the similarity to the definition of a convex function, we take logs of
both sides to get the equivalent inequality

logF

(
1

p

)
≤ 1

p
logF (0) +

(
1− 1

p

)
logF (1).

It is therefore sufficient to show that logF is convex.
To prove that F is midpoint-convex, we use the Cauchy-Schwarz inequality.
We want to show that, for any a, b,

logF

(
a+ b

2

)
≤ 1

2
logF (a) +

1

2
logF (b).

Exponentiating both sides, we want to show

F

(
a+ b

2

)
≤
√
F (a)

√
F (b)

or equivalently (by expanding the definition of F )

E[Xp( a+b
2 )Y q(1−

a+b
2 )] ≤

√
E[XpaY q(1−a)]

√
E[XpbY q(1−b)]

which is precisely the statement of Cauchy-Schwarz applied to X
pa
2 Y

q(1−a)
2 and

X
pb
2 Y

q(1−b)
2 .

It remains to show that logF is continuous. It is equivalent to show that F
is continuous (and positive, but F is clearly positive from the definition). Again
using the equivalence of convexity with midpoint-convexity and continuity, it
suffices to show that F is convex.

To show that F is convex, rewrite F as

F (t) = E[Y q(XpY −q)t].

Now observe that, for any fixed ω in the sample space Ω over which X,Y
are defined, Y (ω)q(X(ω)pY (ω)−q)t is a convex function in t. That is, for any
α ∈ [0, 1],

Y (ω)q(X(ω)pY (ω)−q)t ≤ αY (ω)q + (1− α)X(ω)p.

Taking the expected value of both sides gives the convexity of F . (Here we are
implicitly using the fact that if A,B are random variables with A ≤ B with
probability 1, then E[A] ≤ E[B]; we leave the proof of this as an exercise.)
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1.3 Jensen’s Inequality

Jensen’s inequality is a powerful tool allowing to bound expectation of convex
functions of RVs. To a large extent, it can be viewed as a generalization of the
idea of using the positivity of the square function to obtain Cauchy-Schwarz to
more general functions. By Cauchy-Schwarz,

E[X]2 ≤ E[X2].

Jensen’s inequality generalizes this to any convex function φ:

φ(E[X]) ≤ E[φ(X)].

Let X be a random variable with finite expectation. Consider the graph of
a convex function φ.

Then consider the left-tangent line l of the graph of φ at E[X] - it lies
below the graph of φ by the definition of convexity. This simple fact almost
immediately implies our inequality.

Theorem 1.4 (Jensen’s Inequality). Let X be a random variable and φ be a
convex function. Then,

φ(E[X]) ≤ E[φ(X)].

Observe that if ϕ is concave, then φ = −ϕ is convex. Therefore we have

E[ϕ(X)] ≤ ϕ(E[X]).

Proof. Since φ is convex, if for all x0, x ∈ R,

φ(x) ≥ φ(x0) + φ′−(x0) · (x− x0),

where φ′− is the derivative of φ from the left. Let x = X and x0 = E[X], then:

φ(X) ≥ φ(E[X]) + φ′−(E[X]) · (X − E[X])

Then take the expectation of both sides of the inequality.

E[φ(X)] ≥ E[φ(E[X])] + E[φ′−(E[X]) · (X − E[X])]

= E[φ(E[X])] + φ′−(E[X])E[X − E[X]]

= φ(E[X]).

Now let’s look at a corollary of Jensen’s Inequality.

Corollary 1.3. Let h(p) = (E[|X|p])
1
p where p ≥ 1. If p1 ≤ p2, then h(p1) ≤

h(p2).
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Proof. Let 0 < p1 ≤ p2. Since p2/p1 > 1, the function φ(x) = xp2/p1 is convex.
We have

(h(p2))p2 = (E[|X|p2 ]
1
p2 )p2

= E[|X|p2 ]

= E[(|X|p1)
p2
p1 ]

≥ (E[|X|p1 ])
p2
p1

= h(p1)p2 .

The result follows.

Note that in the proof above, we used Jensen’s inequality to obtain E(|X|p1)
p2
p1 ≥

(E(|X|p1))
p2
p1 by picking φ(Z) = |Z|

p2
p1 , which is a convex function, as p2 ≥ p1.

Then, E(|X|p1)
p2
p1 = E(φ(|X|p1) ≥ φ(E(|X|p1)) = (E(|X|p1))

p2
p1 .

Example 1.4. Consider you have been able to measure the kinetic energy due
to their motion of stars the same mass as the sun in the galaxy. Then since
kinetic energy is related to motion by KE = 1

2mv
2 and in this case mass is

constant. Then KE is related to velocity by a concave function with v ∝
√
KE.

So by Jensen’s inequality the average velocity will be less than the square root of
the average kinetic energy.

Example 1.5. Show that the mean of squares exceeds the square of the mean
for a set of natural numbers of the form {1, 2, ..., N}

Here, φ(x) = x2, and each number in the set has weight (probability) of 1
N .

This gives φ(E[X]) = ( 1
N

∑N
i=1 xi)

2 and E[φ(X)] = 1
N

∑N
i=1 x

2
i

Thus, by Jensen’s inequality:

1

N

N∑
i=1

x2i ≥ (
1

N

N∑
i=1

xi)
2.

Note that the function φ can be replaced by any convex function.
Jensen’s inequality is very important because it can be used in many cases

to simplify mathematical problems. Specifically, this inequality has been used
in many proofs such as the arithmetic and geometric means inequality:

Example 1.6 (Arithmetic-Geometric Mean inequality). Suppose x1.x2, . . . , xn
are positive numbers and w1, . . . , wn are positive numbers, satisfying

∑n
i=1 wi =

1. Then
n∑
i=1

wixi ≥
n∏
i=1

xwi
i .

Le X be a RV with P (X = lnxi) = wi. Since x→ ex is convex,

eE[X] ≤ E[eX ]

The left-hand side is
∏
i=1n x

wi
i . The right-hand side is

∑n
i=1 wixi.
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One can leverage Jensen’s inequality is by changing the probability measure.
This will allow us to extend Jensen’s inequality beyond the single RV setup. The
key is a simple trick, change of measure: we will “absorb’ one RV into a newly-
formed probability measure.

To explain the notion of changing the measure, let Z be any positive random
variable on a probability space (Ω,F , P ) with finite expectation. We can then
define a new probability measure Q on (Ω,F) through

Q(A) :=
EP [Z · 1A]

EP [Z]

for any A ∈ F . Note that here, to avoid confusion, we are using EP to denote
the expected value with respect to the probability measure P . We will also write
EQ for expectation with respect to Q. Checking that this satisfies the axioms of
a probability measure is routine as is checking that if Y is any random variable,

then EQ[Y ] = EP [Z·Y ]
EP [Z] . Both are obtained through monotone convergence. The

latter also uses the linearity of expectation. Note that if X is an indicator
random variable for the event A, then Q is the measure induced by conditioning
on A.

We can now apply Jensen’s inequality with this new probability measure:
for any convex function φ and any random variables W , φ(EQ[W ]) ≤ EQ[φ(W )].
Unwinding definitions,

φ

(
EP [Z ·W ]

EP [Z]

)
≤ EP [Z · φ(W )]

EP [Z]

or equivalently

EP [Z ·W ] ≤ φ−1
(
EP [Z · φ(W )]

EP [Z]

)
EP [Z], (3)

whenever φ has an inverse.
Let’s look at a special case. We’ll use Jensen’s inequality to derive Holder’s

inequality, Theorem 1.1. Let X and Y be two positive RVs. The choice of
function in Jensen’s inequality is easy. Fix p > 1 and let φ(x) = xp.

Next, looking carefully at (4), in order to derive Holder’s inequality, Theorem
1.3, we want to come up with two RVs Z,W such that

1. ZW = XY ; and

2. Z is only a function of X; and

3. Zφ(W ) is only a function of Y .

Let’s try to “solve”. From the first two constraints, Z = XY/W is only a
function of X, therefore there exists some function h such that W = Y/h(X).
Rewritten, Z = Xh(X). Plug this into the third constraint to haveXh(X)φ(Y/h(X))
is only a function of Y , that is, Xh(X)/h(X)p must be a constant c. In light
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of this we select h(x) = x1/(p−1) and all constraints are satisfied, with the con-
stant c = 1. Let’s write down (4) in terms of X an Y . The lefthand side is,

by construction, equal to E[XY ]. Now Zφ(W ) = φ(Y ) = Y p, and Z = X
p

p−1 .
Putting it all together, we obtained:

EP [X · Y ] ≤

(
EP [Y p]

EP [X
p

p−1 ]

)1/p

EP [X
p

p−1 ]. (4)

Setting q = p/(1 − p), we observe 1/q + 1/p = 1, and so the righthand side
becomes

(EP [Y p])1/p(EP [Xq])1/q,

and we’re all set. Nice?

1.4 Harris Inequality

Harris’ inequality is the intuitive statement that that two increasing functions
of the same RV are positively correlated.

Theorem 1.5 (Harris Inequality). Suppose f and g are non-decreasing func-
tions. Let X be a random variable. Then

E[f(X)g(X)] ≥ E[f(X)]E[g(X)],

whenever both sides are defined.

Why does the inequality hold? To get some insight, let’s look at a discrete
version. Suppose a1, a2, . . . , an is a nondecreasing sequence a1 ≤ a2 ≤ · · · ≤ an
and so are b1, b2, . . . , bn. Let’s look at the average product.

1

n

n∑
i=1

aibi.

What would happen to this product if we start moving things around? Let’s
play! Fix i1 < i2. Let’s “move mass” from the “larger” bi2 to the “smaller” bi1 by
setting b′i2 = bi2−ε and b′i1 = bi1 +ε with ε ∈ (0, bi2). Then the net change in the
average product is ε

n (ai1−ai2) ≤ 0. Aha! Repeating this in a clever way until all
b′i are the same we keep lowering the average sum while preserving the average
value of the b′i at every step. Clearly the resulting constant sequence b′1, . . . , b

′
n

has each element equal to the average of our original sequence, 1
n

∑n
i=1 bi. In

other words
1

n

n∑
i=1

aibi ≥

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
.

Now for a probabilistic proof.
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Proof. SupposeX,Y are identical random variables. Since f, g are non-decreasing
functions,

E[(f(X)− f(Y ))(g(X)− g(Y ))] ≥ 0

because if f(X) > f(Y ), g(X) > g(Y ) as well, and vice versa. If we expand the
inequality above, we obtain

E[f(X)g(X)]− E[f(Y )g(X)]− E[f(X)g(Y )] + E[f(Y )g(Y )] ≥ 0

Since X,Y are independent, we can write E[XY ] = E[X]E[Y ]. Therefore

E[f(X)g(X)] + E[f(Y )g(Y )]− E[f(Y )]E[g(X)]− E[f(X)]E[g(Y )] ≥ 0

Since X and Y have the same distribution function, we replace Y with X and
obtain

2E[f(X)g(X)]− 2E[f(X)]E[g(X)] ≥ 0

Therefore,
E[f(X)g(X)] ≥ E[f(X)]E[g(X)]

Example 1.7. The tax rate for an income is the proportion of that income that
is collected as tax. Suppose that the average tax rate per household is 5%, and
that the average income per household is $100,000. Let’s also assume that the
tax rate is higher if the income is higher.

Then, the Harris Inequality implies that the average tax collected per house-
hold is at least as large as the product of the expected tax rate times the expected
income. Therefore, we should have at least $5,000 collected per household on
average.

Just to show the power of the inequality, we will verify the trivial fact that
the variance of a random variable is always positive or zero.

Example 1.8. Use Harris’s inequality to verify that for a random variable X,
the variance V ar(X) ≥ 0.

Proof. We know that for all X, f(X) = X is monotonically increasing. There-
fore, we can utilize the Harris inequality with f(X) = g(X) = X. Plugging this
in, we see

E[f(X)g(X)] ≥ E[f(X)]E[g(X)]

E[X2] ≥ E[X]2

Subtracting E[X2] from both sides and utilizing the relationship between
variance and expectation shows that the inequality holds.
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