ON EFFICIENCY OF MARKOVIAN COUPLINGS

Mason DiCicco_†, joint with Ewan Harlow (U. Wisconsin) and Micheal Dotzel (U. Missouri) Project Advisor: Iddo Ben-Ari, Mathematics [†] Support from: UConn Trimble Family SURF award, NSA Markov Chains REU 2018

Markov Chains (MCs)

A Random process $\mathbf{X} = (X_t)_{t \in \mathbb{Z}_+}$ taking values in a finite set \mathcal{S} with the

 $\mathbb{P}(X_{t+1} = j | X_0 = i_0, \dots, X_t = i_t) = \mathbb{P}(X_1 = j | X_0 = i_t)$ $:= p(i_t, j) \quad \leftarrow \quad \text{transition function}$

Total Variation Distance

Definition 1. Let μ_1 and μ_2 be two probability distributions on S. The total variation distance between the distribution of X_t under $X_0 \sim \mu_1$ and the distribution of X_t under $X_0 \sim \mu_2$, is defined as

$$d_t(\mu_1, \mu_2) = \max_{A \subseteq \mathcal{S}} \left(\mathbb{P}_{\mu_1}(X_t \in A) - \mathbb{P}_{\mu_2}(X_t \in A) \right).$$

If, say, μ_1 is δ_i for some state *i*, we write $d_t(i, \mu_2)$ for $d_t(\delta_i, \mu_2)$, etc.

Ergodic Theorem for MCs

A transition function p is

- **Irreducible** if for any two states i, j, there exists a t > 0 such that $p^{t}(i, j) > 0$. This means that it is possible to get from any state to any other state using only transitions of positive probability
- Aperiodic if for every state i, $gcd\{t : p^t(i, i) > 0\} = 1$.

Theorem 1 (Ergodic Theorem for MCs).

- 1. If p is irreducible, then it possess a unique stationary distribution π : $\mathbb{P}_{\pi}(X_t = j) = \pi(j)$ for all n, or, equivalently, $\pi p = \pi$.
- 2. If p is irreducible and aperiodic, there exists a constant $\rho \in [0,1)$ such that

$$\max_{i} d_t(i,\pi) \le \max_{i,j} d_t(i,j) \asymp \rho^n.$$

Note.

• From linear algebra, the smallest ρ satisfying (2) is the norm of the subdominant eigenvalue for p.

The Method of Coupling

Definition 2. Let p be a transition function on a state space S. An $S \times S$ -valued process (\mathbf{X}, \mathbf{Y}) is called a coupling for p if each marginal process $\mathbf{X} = (X_t)_{t \in \mathbb{Z}_+}$ and $\mathbf{Y} = (Y_t)_{t \in \mathbb{Z}_+}$ is a MC with transition function p.

Suppose (\mathbf{X}, \mathbf{Y}) is a coupling. We define the meeting time τ :

 $\tau = \inf\{t \in \mathbb{Z}_+ : X_t = Y_t\}.$

Lemma 1 (Aldous' inequality). Suppose (\mathbf{X}, \mathbf{Y}) is a coupling with (X_0, \mathbf{X}) Then

 $d_t(i,j) \le \mathbb{P}(\tau > t).$

Thus, coupling is a probabilistic technique for obtaining upper bound through tail distribution of certain random variables.

• A "trivial" coupling is independent coupling: the two copies are independent. In this case, the RHS of (3) gives very crude bounds.

A coupling as the Lemma is called **efficient** if

 $d_t(i,j) \simeq \mathbb{P}(\tau > t).$

Question. How close to equality in (3) a coupling can be?

• Griffeath (and later others) proved the existence of a coupling attaining an equality in (3) (AKA a maximal coupling, stronger than efficient). The construction is complex and too hard to use in applications.

Our work

We restricted the discussion to a special class of analytically tractable couplings in the special case of three-state MCs with symmetric transition functions.

Greedy Couplings

Definition 3. We call a coupling (\mathbf{X}, \mathbf{Y}) greedy Markovian if it satisfies the following two properties:

- (Markovian) It is a MC: (X_{t+1}, Y_{t+1}) is a deterministic function of (X_t, Y_t) and a Uniform-[0, 1] random variable, independent of $(X_0, Y_0), \ldots, (X_t, Y_t)$.
- (greedy) The probability that $Y_{t+1} = X_{t+1}$, conditioned on $(X_t, Y_t) = (x, y)$ is maximized: it is equal to

$$\sum_{j} \min\{\mathbb{P}_{x}(X_{1}=j), \mathbb{P}_{y}(X_{1}=j)\} = 1 - d_{1}(x, y).$$

(1)

Our results

Consider a *symmetric* TF of the form

$$p = \begin{bmatrix} a & b & \gamma \\ b & c & \delta \\ \gamma & \delta & \epsilon \end{bmatrix}$$

We analyze all greedy Markovian couplings for p.

The diagram below represents the coupling from the state (1,2) for the coupled process.

- 1. The diagram corresponds to the particular case a < b and b < c.
- 2. The area of the diagram is 1, representing the probability of all possible configurations for the coupled process in the next step.
- 3. The three regions on the left have respective areas a, b and δ representing meeting in the next step at 1,2, and 3 respectively.
- . The area of the remaining two regions represent the probability of not meeting in the next step. This is split into two regions, because
- (a) The leftover probability from the transition $2 \rightarrow 1$ is b a.
- (b) The leftover probability from the transition $2 \rightarrow 2$ is c b.
- (c) Leftover probability from transitions from 1 is only from the transition $1 \rightarrow 3$, and is equal to $\gamma \delta = 1$ (b-a) + (c-b).

Summarizing:

(meet)
$$\underbrace{\frac{1+a-c}{b}}_{b \sim q} (1,2) \underbrace{c \sim b}_{b \sim q} (3,2)$$

- Item 4(c) captures a feature which is key to the analysis: if no meeting occurs, one of the chains necessarily transitions to some state determined by structure of the TF.
- Through reduction by symmetry and exhaustive examination of the remaining cases, the following result was obtained:

Theorem 2. Let p be a symmetric 3×3 irreducible transition function. Let

$$M_{i,j} = \{k : p_{i,k} > p_{j,k}\}.$$

Then a greedy Markovian coupling is efficient if and only if

$$M_{1,2} = M_{2,3} = M_{3,1}.$$

$$Y_0) = (i, j).$$
(3)

ls on
$$d_t(i, j)$$